On the Representation Theory of Lie Triple Systems
نویسندگان
چکیده
In this paper, we take a new look at the representation theory of Lie triple systems. We consider both ordinary Lie triple systems and restricted Lie triple systems in the sense of Hodge (2001). In a final section, we begin a study of the cohomology of Lie triple systems.
منابع مشابه
Lie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملSuperpotentials for Superconformal Chern–simons Theories from Representation Theory
These notes provide a detailed account of the universal structure of superpotentials defining a large class of superconformal Chern–Simons theories with matter, many of which appear as the low-energy descriptions of multiple M2-brane configurations. The amount of superconformal symmetry in the Chern–Simons-matter theory determines the minimum amount of global symmetry that the associated quarti...
متن کاملLie triple derivation algebra of Virasoro-like algebra
Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.
متن کاملDendriform Analogues of Lie and Jordan Triple Systems
We use computer algebra to determine all the multilinear polynomial identities of degree ≤ 7 satisfied by the trilinear operations (a · b) · c and a · (b · c) in the free dendriform dialgebra, where a · b is the pre-Lie or the pre-Jordan product. For the pre-Lie triple products, we obtain one identity in degree 3, and three independent identities in degree 5, and we show that every identity in ...
متن کاملDeformation of Outer Representations of Galois Group
To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...
متن کامل